写下标题和引言后,徐川开始步入正文。

    “.引用潘荣华与张伟哲两位教授的‘热导率的可压缩navier-stokes方程论文’,在此基础上对将初值条件进行放宽。”

    “则(v,υ,θ)(×)∈H*H*H变为(v,θ)∈H(0,1),υo∈H(0,1)”

    “存在一些正常数C和没有η>0,使得对于任何(x,t)∈(0,1)(0,∞)。”

    “可得C≤υ(x,t)≤C,C≤θ(x,t≤C),及||(υ-∫υdx,υ,θ-∫υdx)(·,t)||H(0,1)≤Ceηt”

    书房中,徐川开始了对NS方程的探索。

    这是一个横跨了三个世纪的难题,要解决它,难度超乎想象。

    从圣维南与斯托克斯在1845年独立提出粘性系数为一常数的形式方程,并命名为Navier-Stokes方程后,两个世纪以来研究它的数学家和物理学家繁多如过江之鲫。

    然而在上面取得重大突破的,却寥寥无几屈指可数。

    目前的数学界,在NS方程上的最大进度,还是他在普林斯顿的时候和费弗曼一起推进的阶段性成果。

    做到了能在在曲面空间中,给定一个初始条件和边界条件,确定解的存在。

    而现在,徐川要将其更进一步的推进,做到是给予一个有限界域与具有Dirichlet边界的条件,在三维空间中,Navier-Stokes方程存在实解,且解光滑。

    如果能做到这一步,差不多就能够给可控核聚变反应堆腔室中的等离子体湍流建立一个数学模型并利用超级计算机进行控制运算了。

    对于徐川来说,他目前并不期盼解决NS方程什么的,那并不是什么靠谱的好主意。

    NS方程从提出到现在已经近两百年了,它依旧如一座看不到尽头的高峰般巍然屹立。

    无数的登山者甚至连山脚都没有接近,人们看不到它的山顶,只能远远的隔着迷雾眺望一眼。

    徐川也不敢说自己有生之年就能完成NS方程的求解。

    不仅仅是因为它难,更是因为它是一个庞大的系统性工程。

    克雷研究所定义的‘三维空间中的N-S方程组光滑解的存在性问题’只不过是NS方程的前奏而已。

    别墅中,徐川已经有超过一周的时间没有出门了。

    他对NS方程的推进在一开始还算顺利,偏微分方程本就是他上辈子的研究领域之一,再加上这辈子将数学作为主修的领域,在这一块,他已经成功超越了上辈子走出去了更远的距离。

    但这并不能让他在NS方程上一帆风顺的走下去,在两天前,他陷入了一个瓶颈中,目前依旧还在寻找办法解决这个难题。

    书房中,徐川皱着眉头盯着稿纸上的算式。